

Course guide 230861 - SM - Stochastic Methods for Optimization and Simulation

Unit in charge: Teaching unit:	Barcelona School of Telecommunications Engineering 748 - FIS - Department of Physics.		
Degree:	MASTER'S DEGREE IN ENGINEERING PHYSICS (Syllabus 2018). (Optional subject). ERASMUS MUNDUS MASTER'S DEGREE IN BIO & PHARMACEUTICAL MATERIALS SCIENCE (Syllabus 2021). (Optional subject).		
Academic year: 2022	ECTS Credits: 4.0 Languages: English		
LECTURER			
Coordinating lecturer:	Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/respon sables-assignatura		
Others:	Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/profess orat-assignat-idioma		

PRIOR SKILLS

Calculus (differential and integral). Basic experience in numerical computer programming.

REQUIREMENTS

No requirements

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Basic:

CB7. (ENG) Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

CB8. (ENG) Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicio.

TEACHING METHODOLOGY

-Master classes -Class exhibitions -Team work -Written work -Problem resolution -Practical exercises

LEARNING OBJECTIVES OF THE SUBJECT

- Ability to generate random numbers according to simple probability distribution laws
- Ability to perform a multidimensional integral using the Monte Carlo method and correctly estimate its statistical variance
- Know the methods for reducing variance and their optimal choice according to the type of problem to be solved
- Know how to make a calculation program for the classical simulation of a multiparticulate system using the Metropolis method
- Ability to perform multidimensional optimization using stochastic techniques
- To know the main stochastic methods used in the study of quantum systems

STUDY LOAD

Туре	Hours	Percentage
Hours large group	36,0	36.00
Self study	64,0	64.00

Total learning time: 100 h

CONTENTS

Stochastic methods for optimization and simulation

Description:

1. Monte Carlo integration: distribution functions and their sampling, crude Monte Carlo, rejection, variance reduction techniques, multidimensional integration, Metropolis method.

2. Monte Carlo optimization: simulated annealing, genetic algorithms. Optimal control theory

3. Application of Monte Carlo methods to many particles systems. Discrete and continuous systems. Classical simulation of condensed phase systems: simple monoatomic systems, molecular materials, bio-molecules.

4. Dynamic Monte Carlo: random paths and diffusion equation, Fokker-Planck and Langevin methods, Brownian dynamics.

5. Applications of Monte Carlo methods to quantum systems: wave functions for bosons and fermions, variational Monte Carlo, diffusive Monte Carlo, path integral Monte Carlo.

Specific objectives:

Knowledge of the techniques in optimal control theory and the ability to apply Monte Carlo methods to find the optimal solution.

Know how to make a classical simulation of a multiparticle system using the Metropolis method.

Understand the basic theory of quantum Monte Carlo, and to know how to build a Monte Carlo program for the calculation of its properties.

Related activities:

Lectures

Assisted practices

Development of Monte Carlo programs

Autonomous learning

Related competencies :

CB8. (ENG) Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicio.

CB7. (ENG) Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

Full-or-part-time: 100h

Theory classes: 24h Practical classes: 10h Guided activities: 10h Self study : 56h

GRADING SYSTEM

Oral presentation 25% Works carried out by the student 75%

No reassessments will be made.

EXAMINATION RULES.

Presentation of practical work in the classroom with computer equipment.

Evaluable written report.

BIBLIOGRAPHY

Basic:

- Duchi, John C. Introductory lectures on stochastic optimization [on line]. [Stanford]: Park City Mathematics Institute, Graduate Summer School Lectures [, 2016Available on: https://stanford.edu/~jduchi/PCMIConvex/.

- Kalos, Malvin H. Monte Carlo methods [on line]. Weinheim: Wiley-Blackwell, 2008 [Consultation: 18/06/2021]. Available on: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527626212. ISBN 9783527407606.

- Frenkel, Daan. Understanding molecular simulation : from algorithms to applications. San Dieho [etc.]: Academic Press, 2002. ISBN 0122673514.

RESOURCES

Computer material:

- Programació científica. Scientific programming languages and visualization tools